

Photodetection at a New Sensitivity Level

High-power optical AC coupling at the 10⁻¹⁰ Hz^{-1/2} level

Patrick Kwee¹, Benno Willke and Karsten Danzmann

Problem

- Problems of traditional photodetection schemes measuring small power fluctuations:
- High power on photodiodes
- Limited at 10⁻⁹ Hz^{-1/2} to 10⁻⁸ Hz^{-1/2} relative power fluctuations

Solution

- Optical AC coupling [2,3] increases sensitivity of a photodetector by using an optical resonator
- Advantages of optical AC coupling:
- Equivalent photo currents of several 10A possible, reaching 10⁻¹⁰ Hz^{-1/2} level

PD

Functional Principle [2]

- Photodiode in reflection of optical resonator
 Power fluctuation sidebands are reflected
 Carrier is almost completely transmitted
- Transfer function for relative power fluctuations given by G(f)
 - $|G(f)| = \sqrt{\frac{1 + g^2 \cdot f^2 / f_0^2}{1 + f^2 / f_0^2}}$

Optical AC Coupling Transfer Function

Experimental Setup

- Relative power noise of 200W laser system [4] measured (continuous-wave laser at 1064nm)
- Optical resonator (ACC) increased sensitivity of photodetector OACPD
- Output mode-cleaner (OMC) necessary to suppress parasitic higher-order modes
- Hänsch-Couillaud locking for ACC, dither lock for OMC used
- Two-stage µs-shutter system to protect OACPD from too much laser power

Sensitivity

- Photodetector sensitivity increased by up to g=62 due to optical AC coupling
- Increased laser power step by step from 1W to 67W
- Achieved 1.1×10^{-10} Hz^{-1/2} for relative power fluctuations
- Detected only 23 mA of photocurrent (equivalent to 32A in a traditional setup)

Gravitational Wave Detector

- Power stabilization for gravitational wave detectors
- These GW detectors require very high power stabilities (e.g. ~2×10⁻⁹ Hz^{-1/2} @ 10 Hz for aLIGO)
- Problematic to reach this with traditional techniques
- Power recycling cavity with a bandwidth of a few Hz could be used as AC coupling cavity
- Output mode cleaner required to suppress modulation sidebands and higher-order modes

few km

Impedance Matching & Output Mode Cleaner

- Specific impedance matching crucial, adjusted with resonator internal baffle
 Parasitic higher-order TEM modes suppressed by output mode-cleaner (OMC)
- Linear optical resonator stabilized to TEM₀₀ mode
- OMC reduced total parasitic mode power down to 79ppm of total input power
 - Measured optical AC coupling gain g as function of impedance matching
 - Fitted model to determine parasitic power

Application

- Application could be power stabilization for gravitational wave detectors, as e.g. Advanced LIGO or third generation detectors [5].
- Power stabilizations for experiments requiring most of the available power for the actual experiment.
- Fast and at the same time high-power photodetectors [5].
- Sensing at the 10⁻¹⁰ Hz^{-1/2} level which is almost impossible due to technical limits with traditional detection schemes.

References

Email: patrick.kwee@aei.mpg.de, homepage: http://www.patrick-kwee.de
 P. Kwee, B. Willke, and K. Danzmann, "Optical ac coupling to overcome limitations in the detection of optical power fluctuations," Opt. Lett. 33, 1509-1511 (2008).
 P. Kwee, B. Willke, and K. Danzmann, "New concepts and results in laser power stabilization", App. Phys. B, 102:515-522 (2011)
 Winkelmann et al., "Injection-locked single-frequency laser with an output power of 220 W", App. Phys. B, 102:529-538 (2011)
 P. Kwee, "Laser Characterization and Stabilization for Precision Interferometry" Ph.D. thesis, Universität Hannover, 2010, http://www.patrick-kwee.de

Max Planck Institute for Gravitational Physics (ALBERT EINSTEIN INSTITUTE)

Laser Group AEI Hannover, Germany

http://www.aei-hannover.de